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Data Aggregation

 Resource constrained nodes
 Limited computation and communication 
 Peer-to-peer multi-hop wireless 

communications
 Loosely-coupled, large-scale system
 Large volume of data, low bandwidth 

and less energy



  

Data Aggregation

 Data aggregation methods are divided 
in to 
 Cluster based approaches
 Non Cluster based approaches



  

Data Aggregation

 Nodes collect local data and send data 
to the sink or monitoring station

 Amount of data handled is large and 
cost of communication is high because 
of direct communication



  

Data Aggregation

 Nodes in the network are grouped to 
communicate to a node in the network 
which are knows as Cluster Heads 
(CH)

 CH collect local data aggregate them 
and transmits the corresponding data 
to sink
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K-Domination
Definition

 Given a graph, G=(V,E), a subset D of 
V is said to be a 1-dominating set, if 
every node v in V is either in D or is 
adjacent to a node in D. 

 A subset D is said to be a k-
dominating set if every node v, not in 
D, is connected to a node in D via a 
path of length less than or equal to k.



  

K-Domination
Examples

  

1-Domination 2-Domination



  

K-Domination 
2D-BaseGrid
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K-Domination 
Embedding Functions

 Given a set of nodes, Z, an embedding 
function is

 

RNNZq  :
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Embedding Functions – 8 Neighbor Mesh Topology 



  

 Node Zi is assigned to the location 

 C is number of columns.
 The transmission range is set to 
 Example, when C = 5, node N8 is assigned to 

the location (2,1).
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K-Domination 
Embedding Functions – 8 Neighbor Mesh Topology 
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 Using the same location assignment with a 
transmission range of 1, we get the 4-
Neighbor topology.
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Embedding Functions – 4 Neighbor Mesh Topology 



  

 Two other embedding functions are for 
 3-Neighbor and 
 6-Neighbor

K-Domination 
Other Mesh Topologies 
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 Therefore, the notion of embedding 
functions helped us to view different 
mesh topologies in a unified manner.

 Given a set of nodes, each node is 
assigned to an (x,y) location on the 
grid with a specific transmission 
range.

K-Domination 
Embedding Functions
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K-Domination 
4 Neighbor Mesh topology 



  

 For each mesh topology there is a 
particular tile structure which covers 
the whole network.

 The center node in each tile act as CH.
 Nodes in the tile communicate to the 

CH.

K-Domination 
Tiles in Mesh topologies 



  

 The size of the tile and number of 
nodes in each tile increases as the 
value of ‘k’ in k-Domination increases

 Number of nodes in each cluster for k-
Domination is q*(k^2+k)/2.

 q is number of neighbors for a node

K-Domination 
Tiles in Mesh topologies 



  

K-Domination 
Tiles in Mesh topologies 

clusterper  Nodes ofNumber 

Nodes ofNumber 
  Clusters ofNumber 

 The above equation gives tentatively 
the number of clusters as the network 
size increases 
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K-Domination 
Example Tiling -4 Neighbor Mesh topology 
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K-Domination 
Complete Tiling -4 Neighbor Mesh topology 



  

 Some nodes along the border cannot 
be covered by complete tiles

 These nodes are covered by ‘subtiles’

K-Domination 
Border Nodes Tiling 
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K-Domination 
Border Nodes Tiling 



  

K-Domination 
Example Tiling -3 Neighbor Mesh topology 



  

K-Domination 
Example Tiling -8 Neighbor Mesh topology 
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System Model
Energy Metrics

 Cost of communicating directly to sink 
is Es.

 Cost of communicating one hop in the 
network is e.

 Amount of data compression done at    
   CH is C.



  

 The above relation gives feasible 
values of ‘k’ for given energies and 
compression ratio metrics.

 Value of ‘k’ implies the number of 
nodes that can be handled by each 
CH 
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System Model
Energy Metrics
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Simulation Results
Metrics Used

 Average Latency 
 end-to-end delay averaged over all messages 

that travel across multi-hop routes

 Average Jitter
 Variance of average delay over all messages

 Message Loss Rate
 ratio of number of messages NOT received at 

cluster head to the number of messages 
generated in cluster
 Buffer overflow
 Link failure



  

Simulation Results
Simulation Approach

 Modeled multi-hop communication as 
a multi-stage queuing network
 Node sent 100 messages of 36 bytes 

each
 Nodes queue length is 10
 Interarrival time between messages was 

exponentially distributed with varying 
mean times.

 Service time in each queue represents
 Exponentially distributed with mean time.



  

Simulation Results
Metrics Used

 Average Latency 
 end-to-end delay averaged over all messages 

that travel across multi-hop routes

 Average Jitter
 Variance of average delay over all messages

 Message Loss Rate
 ratio of number of messages NOT received at 

cluster head to the number of messages 
generated in cluster
 Buffer overflow
 Link failure



  

Simulation Results
Average Latency

10 x 10 Grid 20 x 20 Grid



  

Simulation Results
Average Jitter

10 x 10 Grid 30 x 30 Grid



  

Simulation Results
Message Loss Rate

20 x 20 Grid 30 x 30 Grid



  

Simulation Results
Sink Throughput -30x30 Grid
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Conclusions
 We explored a symmetric way to find the 

Cluster Heads for a region.
 The cost incurred by nodes to communicate 

directly is more compared to the cost 
incurred using CHs.

 The number of CHs effected the 
performance of the system



  

Conclusions
 The system performed best when it had 

less number of CHs
 Future work includes adapting this CH 

selection scheme for different mesh 
topologies.

 Cluster head performance analysis based 
on QoS would provide a clear view.
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Thank You...



  

Questions???


